-
Unit 01
- CFP
- Session 1
-
- Environment Setup
- Session 2
-
- Introduction to ML
- Examples
- Session 3
-
- Sage Math
- CFU
-
Unit 02
- CFP
- Session 1
-
- Linear Algebra
-
- Introduction to Matrices
- Types of Matrices, Vectors
- Session 2
-
- Numpy
- Exercises on Numpy
- Session 3
-
- Linear Algebra
-
- Matrix Operations
- CFU
-
Unit 03
- CFP
- Session 1
-
- Eigen Values and Vectors
- Session 2
-
- Scipy
- Exercises on Scipy
- Session 3
-
- Operations on Vectors
- CFU
-
Unit 04
- CFP
- Session 1
-
- Data: Acquiring, Cleaning and Exploring
- Session 2
-
- Pandas
- Exercises on Pandas
- Session 3
-
- Derivatives
- CFU
-
Unit 05
- CFP
- Session 1
-
- Chain Rule
- Session 2
-
- Matplotlib
- Exercises on Matplotlib
- Session 3
-
- Integration
- CFU
-
Unit 06
- CFP
- Session 1
-
- Probability
-
- Sampling of the data
- Session 2
-
- Probability Distributions
- Exercises
- Session 3
-
- Sampling from a population (Exercise)
- CFU
-
Unit 07
- CFP
- Session 1
-
- Distribution of Statistic
- Exercises
- Session 2
-
- ML Pipeline
- Session 3
-
- Properties of Mean
- Mean, SD and Histograms
- CFU
-
Unit 08
- CFP
- Session 1
-
- SD and normal Curve
- Exercises
- Session 2
-
- Central Limit theorem
- Session 3
-
- Exercises related to Central Limit theorem
- CFU
-
Unit 09
- CFP
- Session 1
-
- Percentiles
- The BootStrap
- Session 2
-
- Exercises on Session 1 topics
- Session 3
-
- Confidence Intervals
- Exercises
- CFU
-
Unit 10
- CFP
- Session 1
-
- Hypotheses testing
- Session 2
-
- Assessing Models
- Exercises
- Session 3
-
- Decisions and Uncertainty
- Exercises
- CFU
-
Unit 11
- CFP
- Session 1
-
- Regression
- Session 2
-
- Exercises on Regression
- Session 3
-
- Gradients
- CFU
-
Unit 12
- CFP
- Session 1
-
- Gradient Descent
- Session 2
-
- Exercises on Gradient Descent
- Session 3
-
- Regression vs Classification: Linear Classifier
- Exercises
- CFU